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Abstract
We have developed a full potential Korringa–Kohn–Rostoker (KKR) Green
function method. Three improvements which make the full potential treatment
efficient and practical are reported. One is a method for constructing the Green
function which satisfies the Wronskian relation exactly. The second is including
the contribution of the non-spherical part of the potential in the wavefunctions
correctly by use of a modified recursive integral equation. Thirdly, we propose a
method that completely eliminates the contribution of irregular solutions of the
Schrödinger equation to charge/spin densities. In order to check the reliability
of the method, we calculated the electric field gradient (EFG), which is sensitive
to how the potential is treated. We have performed EFG calculations for hcp
metals and sp impurities in Zn and Cd with the present method. The results
are in good agreement with experimental data and show that the full potential
KKR method is reliable enough for EFG calculations.

1. Introduction

The electric field gradient (EFG) is an important clue to the local electronic behaviour of
solids. Using the information obtained through EFG measurements, together with theoretical
analyses of the electronic structure of the system, one can determine the local electronic
behaviour as well as the geometry of the lattice around the probe nuclei rather precisely. Such
an approach has become more important due to the development of experimental techniques
such as the nuclear magnetic resonance (NMR), β-NMR, perturbed angular correlation (PAC)
and Mössbauer spectroscopy approaches, which make it possible to determine EFGs in very
complex systems. However, in order to make the theoretical analyses meaningful for these
complex systems, one first of all needs a highly reliable description of the anisotropy of the
electron density distributions. For this reason, improvement of the theoretical method for
describing the electronic structure is crucial. The purpose of the present study is to develop a
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full potential method, which is necessary to give a reliable description of the anisotropy of the
electron distribution, in the framework of the KKR Green function method.

Theoretical analyses of EFGs have been so far been made mainly on the basis of self-
consistent electronic structure calculations using the full potential linearized augmented plane
wave (FLAPW) method. In the FLAPW method, the wavefunctions are expanded into atomic-
like functions inside non-overlapping muffin-tin spheres around the atoms and into plane waves
in the interstitial region. The charge density and the potential are written as a linear combination
of radial functions times symmetrized lattice harmonics inside the spheres and as a Fourier
series in the interstitial region [1]. Thus no shape approximations are made for the description
of the potential. This procedure is frequently called the full potential approach. It is important
for the EFG calculation. In contrast to the sophisticated way of constructing the potential, the
FLAPW method generates atomic-like radial functions, which are used as a variational basis
set, using only the spherical part of the potential inside the sphere. In other words, the full
potential is not used for generating the wavefunctions inside the sphere, meaning that they are
not fully self-consistent.

Recently, several groups have tried to develop a full potential scheme which uses the full
potential not only in the restricted sense, as in FLAPW approach, but also in generating the
wavefunctions. An extension of the Korringa–Kohn–Rostoker (KKR) Green function method
is one such attempt. The KKR method has many advantages such as high speed, high precision
and applicability to a large class of problems requiring the use of Green functions, including
the impurity problems, disordered systems treated by the coherent potential approximation
(CPA) [2, 3], transport properties and many-body perturbation theories. Drittler et al were
the first to develop the full potential KKR method [4, 5]. Their method took account of the
non-spherical parts of the potential in generating the wavefunctions in the sense of the Born
series. Hence, it could exactly treat the full potential. They applied the method in an EFG
calculation for dilute Cu alloys successfully and showed that the dominant contribution was
the Cu d electrons [4]. From the practical point of view, however, the method is not yet fully
satisfactory for electronic structure calculations for arbitrary solids. This is mainly because of
the complicated analytical properties of the full potential KKR method.

We have independently developed a full potential KKR method. Though our method is
mostly based on the formalism given by Drittler, it has some new features that were missing
in the latter. These new features solve most of the difficulties arising in the full potential
KKR method, considerably enhance the power of the method and also improve the numerical
stability and precision as well as the computational speed. We explain these points in section 2
and give the results of the EFG calculations for hcp metals made using the full potential KKR
method in section 3. We compare them with the FLAPW results and experimental data, and
the influence of the description of the potential for EFGs is investigated. In addition, the
relativistic effects on the EFG are discussed. We also show the results of the EFG calculations
for impurities in Zn and Cd.

2. Full potential KKR Green function method

2.1. Basic idea

In the full potential KKR, the crystal is divided into Voronoi cells which define a non-
overlapping cell potential V n(r) in each cell. For such cell potentials the cell-centred Green
function is expanded as [6]

G(r + Rn, r′ + Rn′ ; E) = δnn′ Gn
s (r, r′; E) +

∑

L

Rn
L (r; E)

∑

L ′
Gnn′

L L ′(E)Rn′
L ′(r′; E) (1)
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where Rn denotes the centre of the nth Voronoi cell, L denotes a set of the orbital angular
momentum l and the magnetic quantum number m, and Gn

s (r, r′; E) is the single-site Green
function defined by

Gn
s (r, r′; E) = √

E
∑

L

Rn
L (r<; E)H n

L (r>; E). (2)

Rn
L (r; E) and H n

L (r; E) are the regular and irregular solutions of the single-site Schrödinger
equation, respectively:

[−∇2 + V n(r)
]

Rn
L(r; E) = E Rn

L(r; E) (3)
[−∇2 + V n(r)

]
H n

L (r; E) = E H n
L (r; E) (4)

and r< (r>) is the smaller (larger) of r and r′. The boundary conditions for Rn
L(r; E) and

H n
L (r; E) will be given later in equations (19) and (20). The structural Green function Gnn′

L L ′(E)

satisfies the following Dyson-type equation:

Gnn′
L L ′(E) = gnn′

L L ′(E) +
∑

L ′′n′′
gnn′′

L L ′′(E)
∑

L ′′′
tn′′
L ′′ L ′′′(E)Gn′′n

L ′′′L ′(E), (5)

with the free space structure constant gnn′
L L ′(E) [7] and the t-matrix tn

L L ′(E) for each cell
potential. The t-matrix is defined by

tn
L L ′(E) =

∫
dr jl(

√
Er)YL (r̂; E)V n(r)Rn

L ′(r; E), (6)

where jl(z) is the spherical Bessel function.
Next, we outline a practical way to solve equations (1)–(6), following Drittler et al [5].

First we factorize the cell potential in the form

V n(r) = U n(r)�n(r), (7)

where �n(r) is a shape function, equal to 1 within the cell and zero otherwise, and U n(r) is a
potential which extends smoothly beyond the cell boundary. �n(r) and U n(r) are separately
expanded in spherical harmonics, finally yielding a similar expansion for V n(r):

V n(r) =
∑

L

V n
L (r)YL (r̂). (8)

The single-site wavefunctions Rn
L(r; E) and H n

L (r; E) may also be expanded in spherical
harmonics:

Rn
L (r; E) =

∑

L ′

Rn
L ′ L(r; E)

r
YL ′(r̂) (9)

H n
L (r; E) =

∑

L ′

H n
L ′L(r; E)

r
YL ′(r̂). (10)

Substituting these expansions into the single-site Schrödinger equation yields coupled radial
equations which RL ′L(r; E) (HL ′L (r; E)) should satisfy for a given set of VL(r)s. It is usually
rather time-consuming to integrate these coupled differential equations. As an alternative,
Drittler et al proposed solving perturbatively the integral equation

Rn
L (r; E) = jl(

√
Er)YL(r̂) +

∫
dr′ g(r, r′; E)V n(r′)Rn

L (r′; E), (11)

where g(r, r′; E) is the free space Green function. Starting from the solution of the radial
Schrödinger equation for the spherical part Vl=0,m=0(r) of the potential, Rl(r; E) and Hl(r; E),
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RL ′ L(r; E) (HL ′L(r; E)) can be calculated to an arbitrary order of the Born series by use of
the recursive integral equation

Rout
L L ′(r; E) = Rl(r; E)δL L ′ +

∫ S

0
r ′2dr ′ Gl(r, r ′; E)

∑

L ′′
�VL L ′′(r ′)Rin

L ′′ L ′(r ′; E) (12)

H out
L L ′(r; E) = Hl(r; E)δL L ′ +

∫ S

r
r ′2dr ′Fl(r, r ′; E)

∑

L ′′
�VL L ′′(r ′)H in

L ′′L ′(r ′; E), (13)

where Gl(r, r ′; E) = √
E Rl(r<; E)Hl(r>; E) is the L diagonal single-site Green function for

Vl=0,m=0(r), and �VL L ′(r) is given by

�VL L ′(r) =
∑

L ′′(l′′ �=0)

CL L ′L ′′ VL ′′(r) (14)

with CL L ′L ′′ being the Gaunt number in the usual notation. The superscripts ‘in’ and ‘out’ imply
input and output for each iteration step. The differences between RL ′ L(r; E) and HL ′L(r; E)

are that for the latter Fl(r, r ′; E) = √
E[Rl(r; E)Hl(r ′; E)−Rl(r ′; E)Hl(r; E)] is used instead

of Gl(r, r ′; E) and the integration is performed from r to outside the potential range S. These
differences come from the choice of the boundary condition. Since the non-spherical part of
the potential is much smaller than the spherical part, we normally expect the iteration process
to converge rapidly. Moreover, the procedure also yields the t-matrix of the cell potential
(equation (6)). These features of the method will make the full potential KKR approach
practicable.

The remaining part of the full potential KKR method is, except for the rather minor point
that t-matrices are no longer diagonal, very much the same as the usual KKR method for the
muffin-tin potentials, i.e., solving the Dyson-like equation (5).

In the full potential KKR method, it is important to get smooth convergence in the iteration
procedure given by equations (12) and (13). Two important improvements for that are explained
in the following subsections.

2.2. Wronskian relation

The Schrödinger equation with Green function Gl(r, r ′; E) for the spherical part of the potential
V (r) is written as

[
d2

dr2
+ E − l(l + 1)

r2
+ V (r)

]
Gl(r, r ′; E) = δ(r − r ′). (15)

Through the radial integration, this equation shows that the derivative of Gl(r, r ′; E) jumps at
r = r ′:

lim
ξ→0

dGl(r, r ′; E)

dr

∣∣∣∣
r=r ′−ξ

r=r ′+ξ

= 1. (16)

Using Gl(r, r ′; E) = √
E Rl(r<; E)Hl(r>; E), the Wronskian between Rl(r; E) and Hl(r; E)

is

W [Rl(r; E), Hl(r; E)] = Rl(r; E)H ′
l (r; E) − R′

l(r; E)Hl(r; E) = 1√
E

, (17)

where R′(r) = dR(r)/dr . This result is called the Wronskian relation. In order to obtain the
correct Green function, we have to satisfy this relation with a very high precision. To this end,
the regular and irregular solutions are numerically calculated by the following method. In the
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numerical calculation, Rl(r; E) is first determined starting from the origin and going towards
the outside by solving the following equation for each l:

dP(r)

dr
= Q(r)

dQ(r)

dr
=

[
V (r) − E +

l(l + 1)

r2

]
P(r),

(18)

where P(r) corresponds to Rl(r; E). At the origin, Rl(r; E) is set to r l+1 because

Rl(r; E) ∝ r jl(
√

Er) ∼ r l+1 (r → 0). (19)

Then Hl(r; E) is determined from the outside to the origin. At the boundary of the cell
potential, Hl(r; E) is set to the Hankel function, h(1)

l (z) = jl(z) + inl(z), where nl(z) is the
Neumann function:

Hl(r; E) = −irh(1)

l (
√

Er) r � S. (20)

We show in the following that, in order for the Wronskian relation to be satisfied exactly,
it is essential to use the fourth-order Runge–Kutta method. For the coupled differential
equation,

x ′
i(r) = fi (x, r), (21)

the value xi at the point r + �r is obtained from that at r in the fourth-order Runge–Kutta
method as

xi(r + �r) = xi(r) + 1
6 (k1i + 2k2i + 2k3i + k4i) + O(�r5). (22)

k1i = fi (x, r)�r

k2i = fi (x + 1
2k1, r + 1

2 �r)�r

k3i = fi (x + 1
2k2, r + 1

2 �r)�r

k4i = fi (x + k3, r + �r)�r.

Since the regular solution is solved from the origin towards the outside, R(r + �r) is
obtained from that at the previous point r as

R(r + �r) = R(r) + 1
6 (k1P + 2k2P + 2k3P + k4P)

R′(r + �r) = R′(r) + 1
6 (k1Q + 2k2Q + 2k3Q + k4Q),

(23)

k1P = R′(r)�r k1Q = F(r)R(r)�r

k2P = (R′(r) + 1
2 k1Q)�r k2Q = F(r + 1

2�r)(R(r) + 1
2 k1P)�r

k3P = (R′(r) + 1
2 k2Q)�r k3Q = F(r + 1

2�r)(R(r) + 1
2 k2P)�r

k4P = (R′(r) + k3Q)�r k4Q = F(r + �r)(R(r) + k3P)�r

where F(r) = V (r) − E + l(l+1)

r2 . It is found that R(r + �r) and R′(r + �r) can be written as
linear combinations of R(r) and R′(r):

R(r + �r) = a R(r) + bR′(r)

R′(r + �r) = cR(r) + d R′(r).
(24)

Now we assume that the Wronskian relation is satisfied for the regular and irregular
solutions of equation (17) at the point r + �r . With equation (24), the Wronskian at r + �r is
written as

W [R(r + �r), H (r + �r)] = a R(r)H ′(r + �r) + bR′(r)H ′(r + �r)

− cR(r)H (r + �r) − d R′(r)H (r + �r). (25)
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Next, we consider the Wronskian at the previous point r . Since the irregular solution is solved
from the outside towards the origin, H (r) is obtained from that of the next point r + �r as

H (r) = H (r + �r) + 1
6 (k̃1P + 2k̃2P + 2k̃3P + k̃4P )

H ′(r) = H ′(r + �r) + 1
6 (k̃1Q + 2k̃2Q + 2k̃3Q + k̃4Q),

(26)

k̃1P = −H ′(r + �r)�r k̃1Q = −F(r + �r)H (r + �r)�r

k̃2P = −(H ′(r + �r) + 1
2 k̃1Q)�r k̃2Q = −F(r + 1

2�r)(H (r + �r) + 1
2 k̃1P)�r

k̃3P = −(H ′(r + �r) + 1
2 k̃2Q)�r k̃3Q = −F(r + 1

2 �r)(H (r + �r) + 1
2 k̃2P)�r

k̃4P = −(H ′(r + �r) + k̃3Q)�r k̃4Q = −F(r)(H (r + �r) + k̃3P)�r

and, then,

H (r) = ã H (r + �r) + b̃H ′(r + �r)

H ′(r) = c̃H (r + �r) + d̃ H ′(r + �r).
(27)

Hence the Wronskian at r is written as

W [R(r), H (r)] = c̃R(r)H (r + �r) + d̃ R(r)H ′(r + �r)

− ã R′(r)H (r + �r) − b̃R′(r)H ′(r + �r). (28)

For the coupled differential equation which have the form of equation (18), {a, b, c, d} and
{a′, b′, c′, d ′} have the following relation:

ã = d

b̃ = −b

c̃ = −c

d̃ = a.

(29)

With this relation, the Wronskian at r is written as

W [R(r), H (r)] = −cR(r)H (r + �r) + a R(r)H ′(r + �r)

− d R′(r)H (r + �r) + bR′(r)H ′(r + �r). (30)

This is nothing but the right-hand side of equation (25). Therefore,

W [R(r), H (r)] = W [R(r + �r), H (r + �r)]. (31)

This means that, if the Wronskian relation is satisfied at the point r +�r , the relation necessarily
holds also at the point r . That is, the Wronskian relation is satisfied at all points irrespective
of the step size |�r | as long as the relation is satisfied at the outermost point.

Equation (29) means that when we solve equation (18) from the origin towards the outside
and then solve the same equation from the outside towards the origin, these two solutions
are not equivalent unless (ad − bc) = 1. Now (ad − bc) = 1 + O(�r6), implying that
there is numerical inaccuracy in the wavefunctions due to the use of the Runge–Kutta method.
Nevertheless, relation (29) guarantees the Wronskian relation. The Wronskian relation comes
from the singularity of the Green function, which is related to the number of states. We
cannot count the number of states correctly unless the Green functions satisfy the Wronskian
relation. In other words, we need the Wronskian relation to preserve the unitarity condition.
Therefore the accuracy of the Wronskian relation is more important than that of wavefunctions
themselves.

The Wronskians for potentials calculated with the fourth-order Runge–Kutta and Adams–
Bashforth–Moulton methods are shown in figure 1. From the figure, it is clear that the
Wronskian relation is obeyed with high precision by the Runge–Kutta method.
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 Runge-Kutta (601)
 Runge-Kutta (401)
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l = 2

Figure 1. Wronskians for s, p and d states. They are calculated by the fourth-order Runge–
Kutta and Adams–Bashforth–Moulton methods with 401 and 601 radial mesh points. Here the
Wronskians are normalized to be 1, using the form W (r) = (

√
E)−1[Rl (r; E){dHl (r; E)/dr} −

{dRl (r; E)/dr}Hl (r; E)]. The solutions obtained by the Runge–Kutta method satisfy the
Wronskian relation exactly up to a numerical precision of ∼10−16.

2.3. Recursive integral equation

In the recursive integral equation for the regular solution, equation (12), the integration is
performed for the whole range. On the other hand, in the equation for the irregular solution,
equation (13), the range of integration is from r to S. Equation (12) is a Fredholm equation
while equation (13) is a Volterra equation. In the Fredholm equation, the wavefunction does
not converge when, for instance, �VL L ′(r) is large, or the energy is near a resonance, and so
on. In the Volterra equation, the wavefunction certainly converges even in the above cases,
because the solution is fixed at the edge point of the integration range [8]. In order to obtain
the regular solution, we should employ an alternative scheme to obtain convergence.

In equation (12), the regular solution RL L ′(r; E) is expressed as

Rout
L L ′(r; E) = Rl(r; E)δL L ′ +

∫ S

0
r ′2dr ′ Gl(r, r ′; E)

∑

L ′′
�VL L ′′(r ′)Rin

L ′′ L ′(r ′; E). (32)

It can be rewritten in the following way:

Rout
L ′ L(r; E) = Rl(r; E)γL L ′(E) −

∫ r

0
r ′2dr ′Fl′ (r, r ′; E)

∑

L ′′
�VL ′L ′′(r ′)Rin

L ′′ L ′(r ′; E), (33)
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where

γL L ′(E) = δL L ′ +
1√
E

∫ S

0
dr ′Hl(r

′; E)
∑

L ′′
�VL L ′′(r ′)RL ′′ L ′(r ′; E). (34)

Here, γL L ′(E) is independent of r and can be treated as a constant. Then the new function
PL L ′(r; E) is introduced:

PL L ′(r; E) =
∑

L ′′
RL L ′′(r; E)γ −1

L ′′L ′(E). (35)

Hence equation (33) becomes

Pout
L ′ L(r; E) = Rl(r; E)δL L ′ −

∫ r

0
r ′2dr ′Fl′ (r, r ′; E)

∑

L ′′
�VL ′L ′′(r ′)P in

L ′′ L ′(r ′; E). (36)

Now the equation is a Volterra equation and hence always converges. The normalization
γL L ′(E) can be obtained from the boundary condition.

Examples of the densities of states (DOSs) calculated with the Fredholm and Volterra
equations are shown in figure 2. One can see that the Fredholm equation obviously fails: the
DOS at the bound state oscillates between positive and negative values and never converges. On
the other hand, the result obtained from the Volterra equation converges after a few iterations.

With these improvements, the full potential KKR method becomes a very stable
and accurate method for electronic structure calculation for arbitrary solids. Since the
computational time is much shorter than for the FLAPW method, our method can be used
for calculations for complex systems.

2.4. Modified single-site Green function

In order to construct charge/spin densities, we have to perform an energy integration of the
imaginary part of the Green function Im G(r, r; E). In the KKR Green function method,
this is performed along an integration path deformed into the upper complex half-plane
so as to overcome the difficulty in performing the numerical integration near resonances
and bound states. This, however, causes another problem: normally, the single-site Green
function contains irregular solutions (equation (2)). Such solutions do not contribute to
charge/spin densities and can be subtracted beforehand for real energies as is explained below.
Unfortunately, this is not possible along the complex integration path. This means that the
elimination of the contribution of the irregular solutions has to be done numerically. This often
causes problems in the charge/spin densities in the vicinity of the nucleus. It is clear that the
singular behaviour of the irregular solutions near the origin cannot be completely cancelled
out with numerical complex energy integration. This is particularly serious for the calculation
of EFGs.

As mentioned above, as long as the integration is performed along the real axis, only the
regular solutions are needed. This can be seen from the following consideration: let us divide
the irregular solution H n

L (r) of the single-site Schrödinger equation into a purely irregular part
Nn

L (r) and a regular part as

H n
L (r; E) = Nn

L (r; E) + ξn
L (E)Rn

L(r; E), (37)

where ξn
L (E) does not depend on r. Since the Hamiltonian is real, both Nn

L (r) and Rn
L(r)

are real apart from some complex factors. Combining this fact with a Wronskian relation
between Rn

L(r) and H n
L (r) (or, equivalently, that between Rn

L(r) and Nn
L (r)), we can show

that
√

E Rn
L (r; E)Nn

L(r; E) is always real. From the above, together with the fact that
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Figure 2. Total DOS of TiO2, calculated using the Fredholm and Volterra equations. The parameter
‘itrmx’ means the order of the Born series.

{Rn
L(r; E)}2/

∫
�

dr {Rn
L(r; E)}2 is also real for a real Hamiltonian, we conclude that

Im
√

E Rn
L(r; E)H n

L(r; E) = Im
√

E
{

Rn
L(r; E)

}2
∫
�

dr Rn
L(r; E)H n

L(r; E)∫
�

dr{Rn
L(r; E)}2

(38)

must be satisfied for real energy E . Here, the region of the volume integration � is arbitrary.
This means that, as far as the imaginary part of Gn

s (r, r; E) = ∑
L

√
E Rn

L(r; E)H n
L(r; E) on

the real axis is concerned, we may replace the single-site Green function with the modified
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Green function

G̃n
s (r, r; E) =

∑

L

√
E

{
Rn

L(r; E)
}2

∫
�

dr Rn
L(r; E)H n

L(r; E)∫
�

dr {Rn
L(r; E)}2

. (39)

It is shown that the true single-site Green function and its replacement have the same analytic
properties, i.e., they are both analytic in the upper complex half-plane (see the discussion
in [9]). This contrasts sharply with the fact that

∑
L

√
Eξn

L (E){Rn
L(r; E)}2 does not have this

property. For this reason, it cannot be used in place of the true single-site Green function
when the analytic property of the Green function is important. In our observation, the use of
the modified single-site Green function G̃n

s (r, r; E) is crucial for the calculation of EFGs. It
also improves the quality of the self-consistent potential and thus ensures the accuracy of the
full potential KKR. Yet another method that eliminates irregular solutions was proposed for
the muffin-tin KKR method [9]. The method unfortunately cannot be applied directly in the
present case of a full potential KKR approach.

3. EFG calculation

The electric field gradient tensor is defined in terms of the second derivatives of the Coulomb
potential at the nucleus in Cartesian coordinates:

Vi j = ∂2V (r)

∂ri∂r j

∣∣∣∣
r=0

(i, j = x, y, z). (40)

V (r) is produced by the electron density distribution ρ(r). In the full potential KKR method,
the electron density is expanded in spherical harmonics, which is convenient for the EFG
calculation. For EFG, only l = 2 components remain:

∂2V (r)

∂ri∂r j

∣∣∣∣
r=0

=
∑

m

√
4π

5
V m

2
∂2

∂ri∂r j
r2Y2,m(r̂), (41)

where

V m
l =

√
4π

2l + 1

∫
dr

ρ(r)

r l+1
Y ∗

L (r̂). (42)

3.1. hcp metals

The hcp structure is one of the simplest structures of elements which has a non-vanishing
EFG. Considering the crystal symmetry we can set the asymmetry parameter η to be zero. The
EFGs of hcp metals have been studied extensively both experimentally and theoretically. In
this regard, these systems are suitable for examining the reliability of the present procedure
for the EFG calculation.

The EFG calculation was performed for Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd, La, Hf,
Re, Os and Tl. Most of these are transition metals. The wavefunctions were expanded in real
harmonics up to l = 2, the potential and the charge density up to l = 4 and the shape functions
up to l = 8. We checked the convergence with respect to the angular momentum l cut-off
and it was found that the influence of the l cut-off is very small for EFG calculations. For the
KKR matrix, summation of 3234 k-points in the irreducible wedge of the first Brillouin zone
were used. The exchange–correlation potential was calculated with the parameters in [10].
The lattice constants [11] are summarized in table 1. The calculation was performed both in
the non-relativistic and scalar relativistic approximations [12, 13].
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Figure 3. Theoretical and experimental EFGs in HCP metals.

The results are shown in table 1 and figure 3. In the table, experimental data [14] and
the theoretical results obtained by the FLAPW calculation [16] are also listed. EFGs of hcp
metals show the following systematic behaviour:

(1) At the beginning of the d series,EFGs are positive and increase as the number of d electrons
increases.

(2) At the centre of the d series, EFGs are negative and decrease in absolute value as the
number of d electrons increases.

(3) At the end of the d series, EFGs turn to positive large values.

(4) The variation in EFGs through the d series is more prominent for the higher periods.

This trend is the same as that pointed out by Blaha et al [16]. The dominant contribution
to the EFG is that of the p orbitals. The larger occupation of px and py compared with pz leads
to a positive EFG and vice versa. In the present cases, the DOSs of px and py components
have larger amplitude at lower energy region while that of pz is dominant at higher energies.
Therefore, the simple band filling effect leads to the systematic change of the EFGs [16]. Our
calculation reproduces this trend and shows good agreement with the experimental values.
The present results are not very different from those from the FLAPW method for Be–Cd. For
La–Tl, for which no results calculated by the FLAPW method are available, the same trend is
confirmed.

Tc, Ru, Re and Os are located at the centre of the d series and have large atomic numbers.
For such elements, the relativistic effect is large and the difference between non-relativistic and
scalar relativistic calculations is remarkable. For more detailed discussions, full relativistic
treatments that take account of the extra EFG induced by the spin–orbit coupling may be
necessary [17].
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Table 1. Lattice constants of hcp metals in Å [11] and theoretical and experimental EFGs in hcp
metals [14–16] in units of 1019 V m−2. All experimental EFGs are recalculated using the most
recent reference values for the nuclear quadrupole moments [18, 19]. Values written without signs
indicate that their signs are not determined. ‘nrl’ and ‘sra’ mean the non-relativistic and scalar
relativistic approximations, respectively.

This work

Element a c nrl sra FLAPW Exp.

Be 2.286 6 3.583 3 −4.6 −5.1 −4.2 4.42 ± 0.04
Mg 3.209 27 5.210 33 +10 +3.3 +4.8 4.8 ± 0.24
Sc 3.309 0 5.273 3 +114 +114 +96 38.0 ± 0.7
Ti 2.950 4.686 +193 +205 +207 161 ± 7
Co 2.507 1 4.068 6 −13 −14 −19 −29 ± 1
Zn 2.664 8 4.946 7 +391 +390 +375 +348 ± 34
Y 3.647 4 5.730 6 +267 +303 +279 —
Zr 3.232 5.147 +406 +415 +429 440 ± 10
Tc 2.743 4.400 −89 −153 −147 183 ± 13
Ru 2.703 89 4.281 68 −72 −137 −123 97 ± 7
Cd 2.978 87 5.617 65 +767 +853 +762 +650 ± 71
La 3.75 6.07 +145 +128 — 162 ± 10
Hf 3.196 7 5.057 8 +883 +911 — +733 ± 172
Re 2.760 8 4.458 2 −84 −373 — −512 ± 5
Os 2.735 2 4.319 0 −168 −484 — −416 ± 25
Tl 3.456 5.525 −59 −113 — —

3.2. Impurities in Zn and Cd

The behaviours of the EFGs in hcp metals in the previous subsection are explained by the
band filling effect. However, it is also possible that the c/a ratio, which varies from element
to element, might also affect EFGs. In this respect, clearer evidence of a systematic variation
may be seen in the case of EFGs of impurities in a common host. For this reason, we tried the
full potential KKR calculation on impurity systems. Another reason that we perform such a
calculation is that there are a lot of experimental EFG data for impurities in non-cubic systems.
In order to discuss such EFGs, we need to be able to deal with the impurity systems in the same
way as pure systems and to check the reliability for the impurity calculation. Here we show
the EFG calculations for 4sp (Cu–Kr) and 5sp (Ag–Xe) impurities in Zn and Cd. We assume,
as an empirical rule for heavy impurities, that the impurity atoms sit at the substitutional site
in the hcp crystals of Zn and Cd.

The EFGs of those impurities show systematic trends and they have been studied
theoretically [20–23]. As shown in the previous subsection, the EFG is mainly created by
the non-spherical p charge. In analysing the contribution of the p charge to the EFGs, it is
important to notice that Zn and Cd have c/a ratios of 1.856 and 1.886, respectively. They are
much larger than the ideal ratio of hcp structure, 1.633. The px and py orbitals have a stronger
overlap than the pz orbitals because of the large c/a ratio. This leads to a broader density of
states of px and py than pz . Near the top of the p band, though the px and py components at
the Fermi level are larger than the pz components, the pz components are still in the majority
in the integrated density of states. One finds that the EFG shows an S-shape behaviour, being
positive for a less than half-filled band, vanishing for the half-filled band and being negative
for higher band fillings [2, 20–23].

The procedure of calculation is similar to that used for hcp metals in the previous
subsection. The supercell method was employed to simulate the impurity system. We defined
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Table 2. Theoretical and experimental EFGs of sp impurities in Zn and Cd [14] in units of
1019 V m−2. All experimental EFGs are recalculated using the most recent reference values for
the nuclear quadrupole moments [18, 19]. Values written without signs indicate that their signs are
not determined.

Zn host Cd host

Impurity Theor. Exp. Theor. Exp.

Cu +170 — +90 —
Zn +390 +348 ± 34 +315 272 ± 27
Ga +576 514 ± 41 +463 440 ± 31
Ge +532 301 ± 69 +418 179 ± 41
As −193 — −599 —
Se −1618 — −1519 —
Br −1431 860 ± 220 −766 690 ± 173
Kr −660 817 ± 32 −232 396 ± 27
Ag +864 +193 ± 15 +575 420 ± 50
Cd +1284 +685 ± 61 +853 +650 ± 71
In +1457 +1256 ± 22 +963 +1002 ± 16
Sn +1433 +1186 ± 68 +976 +820 ± 10
Sb +474 — −326 35 ± 4
Te −1374 — −2361 —
I −3314 −2200 ± 700 −2299 −1700 ± 170
Xe −2636 — −999 360 ± 38

the supercell so that it consists of six primitive unit cells of the hcp structure and one of the host
atoms was replaced by the impurity. The calculation was performed with the scalar relativistic
approximation. 270 k-points in the irreducible wedge of the first Brillouin zone were used.
The local lattice relaxation around the impurity was taken into account for nearest neighbour
atoms. Here the lattice relaxation was determined from the total energy of the system assuming
that the relaxation is isotropic. For more general relaxations, we should introduce the force
calculation [24] in addition to the total energy calculation.

The results are shown in table 2 and figure 4 together with the experimental data [14].
In the figure, the results of the KKR calculation with the muffin-tin potential model are also
shown. The overall trends for the experimental EFGs are well reproduced by the theoretical
predictions. The agreement is obviously improved with the full potential treatment. Though
the impurity concentration in the present calculation is rather higher than in the experimental
situations, the results show good agreements and the size of the supercell seems large enough.
Even for such a large supercell the cpu time is reasonable and the present method will be useful
for EFG calculations for various impurity systems.

4. Conclusion

We developed a full potential KKR Green function method. The following improvements make
the full potential method stable and accurate. Using the fourth-order Runge–Kutta method, we
can obtain wavefunctions which satisfy the Wronskian relation exactly. Such wavefunctions
give correct Green functions. The recursive integral equations which involve the non-spherical
part of the potential were modified from the Fredholm type to the Volterra type. With the correct
Green function and the modified integral equations, the non-spherical part of the potential is
taken into account for wavefunctions exactly. Thirdly, using a modified single-site Green
function instead of the true one completely eliminates the singular contribution of the irregular
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Figure 4. Theoretical and experimental EFGs of 4sp impurities in Zn (a), 5sp impurities in Zn (b),
4sp impurities in Cd (c) and 5sp impurities in Cd (d).

solutions of the Schrödinger equation to the charge/spin densities. This greatly improves the
quality of numerical calculations.

By use of the full potential KKR method, the EFGs of hcp metals and impurities in Zn and
Cd are calculated. It is demonstrated that the full potential KKR method is effective for the
EFG calculation not only for pure systems but also for impurity systems. The EFG calculation
can be performed not only for metals reported in this paper but also for ionic substances [25].
Calculation by this method is faster and more compact than the FLAPW calculation and hence
more complex systems can be treated. Taking account of that, the full potential KKR method
is one of the best practical methods for EFG calculation.

Besides EFG calculations, full potential treatment shows potential for any calculations
which are affected by the anisotropy of the charge distribution, such as ones for orbital
ordering, surface and interface effects, molecules and clusters. Test calculations for these
complex systems are desirable.
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